Profinite Heyting Algebras

نویسندگان

  • Guram Bezhanishvili
  • Nick Bezhanishvili
چکیده

For a Heyting algebra A, we show that the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely joinprime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset X. We also show that A is isomorphic to its profinite completion iff A is finitely approximable, complete, and the kernel of every finite homomorphic image of A is a principal filter of A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

متن کامل

Profinite Completions and Canonical Extensions of Heyting Algebras

We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and of Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion ̂ H of a Heyting algebra H, and characterize the dual sp...

متن کامل

On finitely generated Heyting algebras

We study finitely generated Heyting algebras from algebraic and model theoretic points of view. We prove amon others that finitely generated free Heyting algebras embed in their profinite completions, which are projective limits of finitely generated free Heyting algebras of finite dimension.

متن کامل

Compact Hausdorff Heyting algebras

We prove that the topology of a compact Hausdorff topological Heyting algebra is a Stone topology. It then follows from known results that a Heyting algebra is profinite iff it admits a compact Hausdorff topology that makes it a compact Hausdorff topological Heyting algebra.

متن کامل

Comparison of MacNeille, Canonical, and Profinite Completions

Using duality theory, we give necessary and sufficient conditions for the MacNeille, canonical, and profinite completions of distributive lattices, Heyting algebras, and Boolean algebras to be isomorphic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008